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INTRODUCTION 

THE OBJECTIW of this note is to present an interesting trade- 
off that may determine the natural size (diameter) of the hair 
strand in the protective coat of an animal. The general view 
is that hairs provide an insulation effect by trapping a layer 
of air, which has a low thermal conductivity. This view, 
however, is incomplete. An additional function of the hair 
strand-an unwanted effect in the thermal insulation sense- 
is to act as a pin fin, and to augment the heat transfer from 
the otherwise bare area (the skin). Worth noting is that the 
thermal conductivity of hair material (roughly equal to that 
of skin, 0.4 W m- ’ K- ‘) is almost two orders of magnitude 
greater than that of air. 

It seems that the thermal insulation function served by the 
hair growth is considerably more interesting than originally 
thought. Numerous thin hairs may be useful in slowing down 
the air flow that sweeps the skin, but they can also act as fins 
to the point that they can defeat the thermal insulation effect 
associated with the slower air flow. 

In geometric terms, the conflict identified above is the 
mechanism behind the existence of an optimum hair strand 
diameter that minimizes the overall heat transfer rate from 
a finite-size portion of skin covered with air. This optimum 
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FIG. I. Vertical skin area, air boundary layer and hair strands 
that act as fins. 

reveals itself in a surprisingly simple analytical form, if we 
consider the model outlined in Fig. 1. 

VERTICAL SURFACE 

The two-dimensional vertical skin area of height H is 
covered by a large number of perpendicular hair strands of 
uniform density n (strands m-‘). The hair strands constitute 
the solid matrix of a porous medium saturated with air. The 
porosity of this medium is 4 = I -nA,, where A, is the cross- 
sectional area of the hair strand. 

Let T,(x, y) be the local air temperature averaged over an 
infinitesimal volume in the air space formed between the hair 
strands. If II and v are the local air velocity components 
averaged over the space occupied by air only, then the bound- 
ary layer-simplified equation for energy conservation in the 
air flow is 

’ =k,s+nhp(T,-7.). (1) 

On the right-hand side, T&x, y) is the local temperature of 
the nearest hair strand, h the strand-air heat transfer 
coefficient, and p the perimeter of the strand cross-section. 

The group nhp(T,-T,) represents the volumetric heat 
source effect that is due to the local contact (or lack of 
thermal equilibrium) between the air flow and the hair struc- 
ture. This effect is most noticeable outside the air thermal 
boundary layer that coats the skin, because in the outer 
region the temperature of the high-conductivity strand 
(T, z r,) differs substantially from the air temperature 
(r, f r,). Closer to the skin, the temperature difference 
T,-T, decreases to zero, as both T, and T, approach the 
skin temperature r,. In the air boundary layer then, we 
neglect the last term of equation (1). and retain 

If the flow obeys Darcy’s law, then the momentum equa- 
tion for air flow in the same boundary layer reduces to (e.g. 
p. 361 of ref. [I]) 

dv Kgp aT, -=--_ (3) 
ax ~4 ax \ , 

The porosity 4 appears in the denominator on the right- 
hand side because this time v is the air velocity averaged only 
over the space occupied by air. In other words, the product 
$v would be the equivalent of the volume-averaged velocity 
used in the traditional homogeneous porous medium model. 

Along with the mass conservation equation 
au/ax+av/ay = 0, equations (2) and (3) reproduce the sys- 
tem of equations that has been solved already for boundary 
layer natural convection along a vertical walI embedded in a 
homogeneous porous medium [2]. The chief result of the 
Cheng-Minkowycz solution-the height-averaged heat flux 
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NOMENCLATURE 

4 strand cross-sectional area [m) ReO Rayleigh number, equation (17) 
CP air specific heat at constant pressure T 

[J kg- 1 K- ‘1 
temperature K] 

Tll skin t~~mtu~ w] 
D strand diameter [m] 2-* 

diameter of cylinder or sphere [m] 
ambient air temperature [K] 

DO AT temperature difference, To-- I”, [K] 
f 1.7. dimensionless factors, equations (9) and (10) u, II 

: 
gravitational acceleration [m s- ‘1 

air-space averaged velocity components [m s- ‘1 
x, y 

heat transfer coefficient [w m-* K- ‘1 
Cartesian coordinates. Fig. 1. 

kH 
height {m] Greek symbols 
thermal conducti~ty w m- ’ K- ‘f 4 air thermal di~usi~ty [m* s- ‘1 

kz dimensionless constant B volume expansivity K- ‘1 
;Y permeability [rnq Y 

Ll 
number of hair strands per unit area [m-q 

air kinematic viscosity [m’s_‘] 

overall Nusselt number, equations (8) and (21) $ 
air density [kg m-9 
porosity. 

P perimeter of strand cross-section [m] 
4 heat transfer rate [WI Subscripts 
41 heat current through the root of one strand fwl a 
4’ heat transfer rate per unit length pU m-i] 

air property 
min ~nimum 

4” heat flux fw m- 7 opt optimum 
Ra Rayleigh number, equation (12) S hair strand property. 

&-can be used here, after taking account of the slight 
change in the model and the notation 

Substituting also A, = 7rD2/4 andp = XD in equation (S), we 
obtain 

(4) 

The heat transfer rate received by the air flow directly from 
the skin is 4: = qiH4, where Hd, is the skin-air contact area 
per unit length normal to the plane of Fig. 1. In conclusion, 
the air flow contribution to the total heat transfer rate is 

(3 

The other contribution to the total heat transfer rate 
through the area of height H is due to the hair strands. 
According to the model that led to the simplified air-energy 
equation (2). the distance of conduction penetration along 
the hair strand is considerably larger than the thickness of 
the air boundary Iayer. As a fin, the hair strand is bathed by 
nearly isothermal fluid (T,), therefore the heat transfer rate 
through the root of one hair strand is 

q, = (k,A,hp) “2AT. (6) 

It is being assumed that the strand is long enough so that 
the heat transfer through its tip is negligible, and that h is 
constant. We return to the constant-h a~umption in equa- 
tions (10) and (28). In conclmion, the heat transfer effected 
by all the hair strands is q: = q,nH, or 

q: = (k,A,hp)“=nHAT. (7) 

The total heat transfer rate through the surface of height 
H, per unit area normal to the plane of Fig. 1 is q’ = q;+q;. 
In view of equations (5) and (7), this result can be non- 
dime~iona~z~ as an overall Nusselt number 

(8) 
It is shown later in equations (27) and (28) that in low 
Reynolds number flow the hair strand diameter D affects 
both the permeability and the heat transfer coefficient 
through relations of the type 

K = D’f, (4) (9) 

Nu = 0.888(tbf, Ra)ii2s +2(1-#) 
( > 

:fz 
. 

‘,$ (11) 

where Ra is the Rayleigh number for free convection in open 
air 

Ra =stJATH’ 
Yg--’ (12) 

Equation (I 1) shows cIearly the trade-off between the air 
and hair strand heat transfer contributions, as the strand 
diameter D varies. An optimum strand diameter exists 

such that the overall heat transfer rate q‘ (or Mu) reaches a 
minimum 

Since Ra is proportional to H’, equation (13) implies that 
the optimum hair strand diameter is proportional to Hi”. 
In conclusion, the optimum strand diameter for ~nimum 
heat transfer is a weak function of the linear size of the 
animal for which the hair growth serves as insulation. 

CYLINDRICAL SURFACE 

Analogous conclusions are reached in the case where 
instead of the verticaf plane of Fig. 1, the skin surface has 
the shape of a long horizontal cylinder. What changes in the 
analysis is equation (4). that is the formula for the average 
heat transfer coefficient between the skin and the air bound- 
ary layer. According to Cheng [3), the average heat transfer 
coetbcient for a horizontal cylinder of diameter Do sur- 
rounded by a porous medium with Darcy flow is 

The corresponding direct heat transfer rate to air, per unit 
length in the axial direction is q: = gcSrD,,& The heat transfer 
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rate contribution made by all the hair strands per unit axial 
length is q: = q,nnD,. The total heat transfer rate 
(q’ = q;+q:) can then be substituted in the overall Nusselt 
number definition shown on the left-hand side of equation 
(8). After applying the K and h models, equations (9) and 
(IO), the Nu expression assumes the final form 

Nu = 1.775(4/-, Ra,)“‘;+2a(l-4) 
t/2 D 

0 
2 

where Ru,, is the air-convection Rayleigh number based on 
cylinder diameter 

Ra _gWD:. 
0 

aa” 
(17) 

The analogy between equations (16) and (1 I) is evident. 
The optimum hair strand diameter and the corresponding 
minimum overall heat transfer rate are 

D 
-$ = 1.881(1-4) 

II 
i/z (; -&--r’ (18) 

Nu,~. = 6.679( 1 -I./I) 1~2(~f,f2~Rao>“‘. (19) 

Noting that Ru,, is proportional to D& we learn that the 
optimum strand diameter is proportional to DA”. This trend 
is the same as the one revealed by equation (13) for the 
vertical plane surface covered with hair. 

SPHERICAL SURFACE 

In the case where the body may be modelled as a sphere 
of diameter Do, the average coefficient for heat transfer to 
the air boundary layer is, cf. Cheng [3] 

(20) 

Writing q. = q:rrD$$ for the total direct heat transfer 
through the bare portions of the skin, and q, = q,nxD’, for 
the contribution made by all the hair strands, we can cal- 
culate the total heat transfer rate q = q.+q,. or the overall 
Nusselt number 

4 
N”=m= l.l37(4f, Ra,)‘:‘; 

0 

The Rayleigh number Ra,, has the same definition as in 
the preceding section, equation (17). The minimization of 
the Nu expression (21) with respect to the strand diameter 
D yields 

D 
-$ = 2.351(1-4) (22) 

0 

Nu,,,~. = 5.346(1-b) iI2 (~/Jr ;Ra,,r”. (23) 

The symmetry between these results and equations (13), (14) 
and (18). (19) is evident. Once again we learn that the hair 
strand diameter that minimizes the overall heat transfer 
increases as 0;“. i.e. as the vertical dimension raised to the 
power l/4. 

CONCLUSION 

The three geometries analyzed in this note-vertical plane, 
horizontal cylinder and sphere-reinforce the conclusion 

that the insulation effect of slowly moving air is in com- 
petition with the heat-transfer augmentation (finning) effect 
provided by the hair strands. This competition is visible in 
the overall heat transfer rate expressions (I I), (16) and (21). 
in which the two terms represent the contributions made 
by the bare skin and the hair strands, respectively. One 
implication of this conflict is the existence of an optimum 
hair strand diameter, for which the overall heat transfer rate 
is minimum. 

The model adopted in this study, Fig. I, was intentionally 
simplified so that it would be possible to see the heat-transfer 
trade-off with the naked eye, as in equations (1 I). (16). and 
(21). The validity of this model rests on several limiting 
assumptions. For example, the hair strand can be treated as 
a one-dimensional fin only when its Biot number hD/k, 
is considerably smaller than 1. In view of equation (IO), 
this condition becomes 

k, 
k >f2(4) 

* 

in other words, a large k,/k, ratio is essential to the validity 
of this simple model. 

Another assumption that was made graphically in Fig. 1 
and analytically in the construction of equation (8). is that 
the distance of conduction penetration along the hair strand 
is considerably greater than the air boundary layer thickness 

> H Rae’/=. 

This condition can be rearranged to read 

‘I2 

in which the right-hand side of the inequality is a number 
considerably smaller than 1. It can be shown that the opti- 
mum diameter ratio (13) satisfies inequality (26) when both 
Ra and kJk, are large numbers. 

Less certain is the form of the functions j,(4) and f*(4), 
that is the effect of porosity on permeability and heat transfer 
coefficient. Using the frictionifactor information listed for 
tube bundles in cross flow (Fin. IO. DD. 4-100 of Mueller 141). 
it can be shown that in ‘thk low’keynolds number lit& 
the equivalent ‘permeability’ of the bundle is represented 
reasonably well by an expression of the Kozeny type [S] 

4’ 
K=kl(lD2 (27) 

in which the empirical constant k, is consistently of the order 
of IO’. Unfortunately, the range of $ covered by the tube 
bundle friction factor data [4] is narrow, 0.42 < 4 < 0.65, 
therefore, a special investigation needs to be undertaken to 
test the validity of the f,(4) form suggested by equation (27). 

For the average strand-air friction factor, the analogy 
between friction and heat transfer suggests that [5] cor- 
responding to equation (27) 

hzk *-4k ---. 
4 4 D 

(28) 

The same order-of-magnitude conclusion is reached based 
on the argument that in small-Reynolds-number duct flow h 
always scales as kJDb (e.g. p. 85 of ref. [I]), where the 
hydraulic diameter of the air space is 4D/(l- 4). 
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INTRODUCTION 

WITH THE knowledge accumulated from the previous studies 
on convective heat transfer in porous media, considerable 
attention has now turned to a more sophisticated problem 
that takes into account the mass transfer effects. The 
phenomenon, which is sometimes referred to as ‘double- 
diffusive’ or ‘thermohaline’ convection in geophysical fluid 
mechanics, has many important applications in energy- 
related engineering problems, for example, the migration of 
moisture in fibrous insulation, the spreading of chemical 
pollutants through water-saturated soil, the cooling of 
nuclear reactors and the underground disposal of nuclear 
wastes. 

Nield [l] made the first attempt to study the stability of 
flow in horizontal layers with imposed vertical temperature 
and concentration gradients for coupled heat and mass trans- 
fer by natural convection in a porous medium. Bejan and 
co-workers [2-S] conducted a series of investigators to study 
these effects on natural convection for various geometries. In 
a recent study, Poulikakos [6] extended the results by Bejan 
[7l to consider buoyancy induced heat and mass transfer 
from a concentrated source in an infinite porous medium. 

The purpose of this study is to analyze another practically 
important problem of natural convection induced by the 
combined action of temperature and concentration gradients 
from a buried sphere. The approach is parallel to that of 
Poulikakos [6], however, more complicated boundary con- 
ditions, i.e. combination of different thermal and con- 
centration boundary conditions, are considered. Emphases 
have been placed on a fundamental examination of these 
effects on the flow, temperature and concentration fields. 

FORMULATION 

Consider a sphere of radius a buried in an intinite porous 
medium. For heat and mass transfer driven by buoyancy 
effects, the governing equations based on Darcy’s law are 
simplified by introducing the stream function such that they 
are given by 

+Rsin 0g) -N(cos 0% +Rsin (I;)] (1) 

(2) 

(3) 

where temperature and concentration have been non- 
dimensional&d as follows : 

T- T, 
@=r,-r,* constant temperature 

T--T, 
qlka ’ 

constant heat flux 

c_C-CIO 
c#)-c,’ 

constant concentration 

c-c, 
- 
m/Da ’ 

constant mass flux. 

The subscripts 0 and co denote the condition at the surface 
of the sphere and at infinity, respectively. 

Four different cases are considered in the present study : 

(1) a sphere of constant temperature and coaantration ; 
(2) a sphere of constant heat flux and mass flux ; 
(3) a sphere of constant temperature and mass tlux ; 
(4) a sphere of constant heat flux and concentration. 

Therefore, the boundary conditions can be summarixed as 
follows : 

atR=l, 

@=I for constant temperature case 

ao 
z = - I for constant heat flux case 

C=l for constant concentration case 

ac 
z = - 1 for constant mass flux case 
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